Visual Data Analytics
A Short Tutorial

Duen Horng (Polo) Chau
Associate Professor & ML Area Leader, College of Computing
Associate Director, MS Analytics
Georgia Tech

Twitter: @PoloChau
11 Lessons Learned from Working with Tech Companies (Facebook, Google, Intel, eBay, Symantec)
Google “Polo Chau” if interested in my professional life.

POLO CHAU Legal name: Duen Horng Chau

Associate Director, MS in Analytics
Associate Professor, School of Computational Science & Engineering
Machine Learning Area Leader, College of Computing
Georgia Tech

LinkedIn Twitter Google Scholar YouTube

Admin: Carolyn Young Financial Manager: Arlene Washington
polo@gatech.edu www.cc.gatech.edu/~dchau
Office: Klaus 1324 404-385-7682

POSITIONS

May 2014 - Associate Director
MS in Analytics, Georgia Tech

Aug 2018 - Associate Professor
School of Computational Science & Engineering, Georgia Tech

Aug 2012 - Aug 2018 Assistant Professor
School of Computational Science & Engineering, Georgia Tech

Dec 2012 - Dec 2015 Adjunct Assistant Professor
Scalable. Interactive. Interpretable.

At Georgia Tech, we innovate scalable, interactive, and interpretable tools that amplify human's ability to understand and interact with billion-scale data and machine learning models. Our current research thrusts: human-centered AI (interpretable, fair, safe AI; adversarial ML); large graph visualization and mining; cybersecurity; and social good (health, energy).
At Georgia Tech, I teach

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Course Websites</th>
<th>Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>Spring</td>
<td>Campus</td>
<td>1000</td>
</tr>
<tr>
<td>2018</td>
<td>Fall</td>
<td>Campus</td>
<td>677</td>
</tr>
<tr>
<td>2018</td>
<td>Spring</td>
<td>Campus</td>
<td>287</td>
</tr>
<tr>
<td>2017</td>
<td>Fall</td>
<td>Campus</td>
<td>273</td>
</tr>
<tr>
<td>2017</td>
<td>Spring</td>
<td>Campus</td>
<td>214</td>
</tr>
<tr>
<td>2016</td>
<td>Fall</td>
<td>Campus</td>
<td>215</td>
</tr>
<tr>
<td>2016</td>
<td>Spring</td>
<td>Campus</td>
<td>187</td>
</tr>
<tr>
<td>2015</td>
<td>Fall</td>
<td>Campus</td>
<td>146</td>
</tr>
<tr>
<td>2015</td>
<td>Spring</td>
<td>Campus</td>
<td>113</td>
</tr>
<tr>
<td>2014</td>
<td>Fall</td>
<td>Campus</td>
<td>118</td>
</tr>
<tr>
<td>2014</td>
<td>Spring</td>
<td>Campus</td>
<td>95</td>
</tr>
<tr>
<td>2013</td>
<td>Spring</td>
<td>Campus</td>
<td>35</td>
</tr>
</tbody>
</table>
Lesson 1

You need to learn many things.
Good news! Many jobs!

Most companies looking for “data scientists”

*The data scientist role is critical for organizations looking to extract insight from information assets for ‘big data’ initiatives and requires a **broad combination** of skills that may be fulfilled better as a team*

Breadth of knowledge is important.
The World of Data

- Number of emails sent every second: 2.9 million
- Data consumed by households each day: 375 megabytes
- Video uploaded to YouTube every minute: 20 hours
- Data per day processed by Google: 24 petabytes
- Tweets per day: 50 million
- Total minutes spent on Facebook each month: 700 billion
- Data sent and received by mobile internet users: 1.3 exabytes
- Products ordered on Amazon per second: 72.9 items

Sources: Cisco, Nielsen, MapR, Facebook, Google, Twitter, YouTube

In the 21st century, we live a large part of our lives online. Almost everything we do is reduced to bits and sent through cables around the world at light speed. But just how much data are we generating? This is a look at just some of the massive amounts of information that human beings create every single day.
What are the “ingredients”?
What are the “ingredients”?

Need to think (a lot) about: storage, complex system design, scalability of algorithms, visualization techniques, interaction techniques, statistical tests, etc.
Lesson 2

Learn **data science concepts** and **key generalizable techniques** to **future-proof** yourselves.

And here’s a good book.
A critical skill in data science is the ability to decompose a data-analytics problem into pieces such that each piece matches a known task for which tools are available. Recognizing familiar problems and their solutions avoids wasting time and resources reinventing the wheel. It also allows people to focus attention on more interesting parts of the process that require human involvement—parts that have not been automated, so human creativity and intelligence must come into play.
1. Classification
2. Regression
3. Similarity Matching
4. Clustering
5. Co-occurrence grouping
 (aka frequent items mining, association rule discovery, market-basket analysis)
6. Profiling
 (related to pattern mining, anomaly detection)
7. Link prediction / recommendation
8. Data reduction
 (aka dimensionality reduction)
9. Causal modeling

Great news!
Few principles!!
Data are dirty.
Always have been.
And always will be.

You will likely spend majority of your time cleaning data. And that’s important work!
Otherwise, *garbage in, garbage out.*
Data Cleaning

Why data can be dirty?
How dirty is real data?

Examples

- Jan 19, 2016
- January 19, 16
- 1/19/16
- 2006-01-19
- 19/1/16

How dirty is real data?

Examples

• duplicates
• empty rows
• abbreviations (different kinds)
• difference in scales / inconsistency in description/ sometimes include units
• typos
• missing values
• trailing spaces
• incomplete cells
• synonyms of the same thing
• skewed distribution (outliers)
• bad formatting / not in relational format (in a format not expected)
“80%” Time Spent on Data Preparation

Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says [Forbes]

What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets: 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%
We are all Data Janitor!
The Silver Lining

“Painful process of cleaning, parsing, and proofing one’s data” — one of the three sexy skills of data geeks (the other two: statistics, visualization)

@BigDataBorat tweeted
“Data Science is 99% preparation, 1% misinterpretation.”
Welcome!

OpenRefine (formerly Google Refine) is a powerful tool for working with messy data: cleaning it; transforming it from one format into another; extending it with web services; and linking it to databases like Freebase.

Please note that since October 2nd, 2012, Google is not actively supporting this project, which has now been rebranded to OpenRefine. Project development, documentation and promotion is now fully supported by volunteers. Find out more about the history of OpenRefine and how you can help the community.

Using OpenRefine - The Book

Using OpenRefine, by Ruben Verborgh and Max De Wilde, offers a great introduction to OpenRefine. Organized by recipes with hands on examples, the book covers the following topics:

1. Import data in various formats
2. Explore datasets in a matter of seconds
Python is a king.

Some say R is.

In practice, you may want to use the ones that have the widest community support.
Python

One of “big-3” programming languages at tech firms like Google.

- **Java** and **C++** are the other two.

Easy to write, read, run, and debug

- General programming language, tons of libraries
- Works well with others (a great “glue” language)
You’ve got to know **SQL** and **algorithms** (and Big-O)

(Even though job descriptions may not mention them.)

Why?

1. Many datasets stored in databases.
2. You need to know if an algorithm can **scale** to large amount of data.
Visualization is **NOT** only about “making things look pretty”

(Aesthetics is important too)

Key is to design **effective** visualization to:

(1) **communicate** and

(2) help people **gain insights**
Why **visualize** data? Why not automate?

Anscombe’s Quartet

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
Designing **effective** visualization is not hard if you learn the principles.

Easy, because…

Simple charts (bar charts, line charts, scatterplots) are incredibly effective; handles most practical needs!
Designing effective visualization is not hard if you learn the principles.

Colors (even grayscale) must be used carefully.
Designing **effective** visualization is not hard if you learn the principles.

Charts can mislead (sometimes intentionally)
Learn D3 and visualization basics

Seeing is believing.
A huge competitive edge.
Scalable interactive visualization easier to deploy than ever before. Many tools (internal + external) now run in browser.

GAN Lab (with Google)
Play with **Generated Adversarial Networks** (GAN) in browser

ActiVis (with Facebook)
Visual Exploration of Deep Neural Network Models
Lesson 8

Scalable interactive visualization easier to deploy than ever before. Many tools (internal + external) now run in browser.

GAN Lab (with Google)
Play with Generated Adversarial Networks (GAN) in browser

ActiVis (with Facebook)
Visual Exploration of Deep Neural Network Models
Companies expect you-all to know the “basic” big data technologies (e.g., Hadoop, Spark)
“Big Data” is Common...

Google processed **24 PB / day** (2009)

Facebook’s add **0.5 PB / day** to its data warehouses

CERN generated **200 PB** of data from “Higgs boson” experiments

Avatar’s 3D effects took **1 PB** to store

http://www.theregister.co.uk/2012/11/09/facebook_open_sources_corona/
http://thenextweb.com/2010/01/01/avatar-takes-1-petabyte-storage-space-equivalent-32-year-long-mp3/
http://dl.acm.org/citation.cfm?doid=1327452.1327492
Open-source software for reliable, scalable, distributed computing

Written in Java

Scale to thousands of machines

- **Linear** scalability (with good algorithm design): if you have 2 machines, your job runs twice as fast

Uses simple programming model (MapReduce)

Fault tolerant (HDFS)

- Can recover from machine/disk failure (no need to restart computation)

http://hadoop.apache.org
Why learn Hadoop?

Fortune 500 companies use it

Many research groups/projects use it

Strong community support, and favored/backed my major companies, e.g., IBM, Google, Yahoo, eBay, Microsoft, etc.

It’s free, open-source

Low cost to set up (works on commodity machines)

Will be an “essential skill”, like SQL
Why learn Spark?

Spark project started in 2009 at UC Berkeley AMP lab, open sourced 2010

Became Apache Top-Level Project in Feb 2014

Shark/Spark SQL started summer 2011

Built by 250+ developers and people from 50 companies

Scale to 1000+ nodes in production

In use at Berkeley, Princeton, Klout, Foursquare, Conviva, Quantifind, Yahoo! Research, …

http://en.wikipedia.org/wiki/Apache_Spark
Why a New Programming Model?

MapReduce greatly simplified big data analysis
But as soon as it got popular, users wanted more:

» More complex, multi-stage applications (e.g. iterative graph algorithms and machine learning)
» More interactive ad-hoc queries
Why a New Programming Model?

MapReduce greatly simplified big data analysis

But as soon as it got popular, users wanted more:

» More complex, multi-stage applications (e.g. iterative graph algorithms and machine learning)
» More interactive ad-hoc queries

Require faster data sharing across parallel jobs
Data Sharing in MapReduce

Input

HDFS read

iter. 1

HDFS write

HDFS read

iter. 2

HDFS write

iter. 3

HDFS read

query 1

result 1

query 2

result 2

query 3

result 3

...
Data Sharing in MapReduce

Slow due to replication, serialization, and disk IO
Data Sharing in Spark

Input -> iter. 1 -> iter. 2 -> ...

Input -> one-time processing

Distributed memory

query 1

query 2

query 3 -> ...

38
Data Sharing in **Spark**

- **Input**
- **Distributed memory**
- **one-time processing**
- **iter. 1**
- **iter. 2**
- **query 1**
- **query 2**
- **query 3**
- **. . .**

10-100x faster than network and disk
Is MapReduce dead? No!

Google Dumps MapReduce in Favor of New Hyper-Scale Analytics System

http://www.reddit.com/r/compsci/comments/296aqr/on_the_death_of_mapreduce_at_google/

On the Death of Map-Reduce at Google. (the-paper-trail.org)

As an employee, I was surprised by this headline, considering I just ran some mapreduces this past week. After digging further, this headline and article is rather inaccurate. Cloud DataFlow is the external name for what is internally called Flume.

Flume is a layer that runs on top of MapReduce that abstracts away the complexity into something that is much easier.
Industry moves fast. So should you.

Be **cautiously optimistic**.
And be very careful of **hype**.

There were 2 AI winters.

Gartner Hype Cycle for Emerging Technologies

Debatable!

Lesson 11

Your **soft skills** can be more important than your hard skills.

If people don’t understand your approach, they won’t appreciate it.
Visual Data Analytics
A Short Tutorial

Duen Horng (Polo) Chau
Associate Professor & ML Area Leader, College of Computing
Associate Director, MS Analytics
Georgia Tech

Twitter: @PoloChau