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Electricity Grid Evolution

Traditional System:
• Bulk generation
• Central control
• Unidirectional power flow

Future System:
• More renewables and DERs
• Bi-directional power flow
• Decentralized control 
• Increased sensing and 

communication
• Massive new data
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Outline

• DERs and emerging DER data
• Applications:

1. Detecting solar PV installations
• Change point detection
• Neural Network

2. Revenue from energy storage
• Clustering
• Optimization

3. Fast PV hosting capacity
• Event-driven regression over nonlinear voltage manifolds
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Distributed Energy Resources (DER)

Solar PV
Energy Storage
Distributed Generation
Flexible Loads
Combined Heat and Power (CHP)
Electric Vehicles
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DER Related Data Sources

• Data sources for DER analytics:

Weather 
Information

Geographic
Information

Market
Signals

Smart Meter 
Database

Distributed 
Resources
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DER Related Data Sources

• Utilities, DER Providers, Public
• https://openei.org/wiki/Main_Page
• Net load, Appliances: Smart Meter Data Analytics

• https://smda.github.io/smart-meter-data-portal/

# Dataset Examples

1 Almanac of Minutely Power Dataset (AMPds)
2 Controlled On/Off Loads Library dataset (COOLL)
3 Dutch Residential Energy Dataset (DRED)
4 Electricity Consumption & Occupancy data set (ECO)
5 GREEND Dataset
6 Indian Dataset for Ambient Water and Energy (iAWE)
7 REFIT Electrical Load Measurements dataset
8 Smart Home Data Set
9 Tracebase

10 UK Domestic Appliance-Level Electricity (UK-DALE)
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1. PV Detection

Solar Energy Integration
 Solar represented 29% of all U.S. capacity additions in 2018
 U.S. market installed 10.6 GW of solar PV capacity
 Distributed solar PV accounted for 41% of this capacity
 Solar capacity expected to exceed 100 GW by 2021

By 2050, Solar will make up 21% of 
total installed capacity in the U.S.
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PV Detection

Problem:
• PV systems may vary from the 

interconnection database. 
• Keeping PV interconnection databases 

updated is a major challenge.

Objective: 
• Use data driven solutions to detect PV 

installations. 
• Change Point Detection
• Convolution Neural Networks

Causes of Discrepancy:
• Not interconnected 
• Project delayed 
• Changed size 
• Module/string failures 
• Unauthorized installation
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• PE divergence:

• Measures the difference between two distributions

Time
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PV Detection using Change Point Method

Change point detection method
• Initially no PV. Then try to detect whether there is a PV
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PV Detection using Change Point Method

Hypothesis Testing:

�𝐻𝐻0: There is NO PV Installed
𝐻𝐻1: There is a PV Installed
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�𝐻𝐻0:𝑿𝑿 and 𝒀𝒀 are not positively correlated
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13

Pearson’s r Spearman’s rank coefficient

𝒓𝒓 𝒓𝒓𝒔𝒔 p-value

0.9205 0.8351 3.9414e-26

Spearman’s rank (𝑟𝑟𝑠𝑠) is used instead of 
Person since 𝑿𝑿 and 𝒀𝒀 are not normally 
distributed
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PV Detection using CNN

Convolution Neural Network (CNN) 
• Data series may not have a change point

Approach 
• Synthetic net load Data Generation

• Uses AMI data

• Classification of daily net load profiles

• Decision Making for each customer

PV_
= 0/1

Classification

Slice Into 
Daily Profiles

Day 1

Day 2

Day N

CNN

CNN

CNN

PV Y/N

PV Y/N

PV Y/N

•••

Decision-Making

> ThresholdNumber of Days 
PV is Detected

PV

Data Generation
Metered 
load data

Metered PV 
Output

Scaling Factor

Net Load 
Profile

NO PV
YES

NO
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PV Detection using CNN

Generating Synthetic Net Load Data
• Load data sourced from Pecan Street data set.
• PV generation data sourced from the Umass Trace Repository*. 
• Synthetic net load data generated by combining each data set using:

• Synthetic data set consisted of 50% customers with PV installed.

• “On-the-fly” synthetic data generation 
method to study sensitivities on the 
various simulation dimensions.

* http://traces.cs.umass.edu/index.php/Smart/Smart
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PV Detection using CNN

Classification Using CNN

• Input: daily net load profile.
• Output: probability of PV (1 = PV installed, 0 = no PV). 

• Architecture: convolutional layer, max pooling, convolutional layer, max 
pooling, fully connected layer (100), fully connected layer (1).

• CNN trained for 200 epochs using RMSprop optimization.
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PV Detection using CNN

Decision Making using Threshold
• Thresholding logic:
• Impact of threshold on TPR, TNR and total customer classification accuracy:

_ , .day
day

if PV Detected Threshold Ndays Customer has PV otherwise does not> × ⇒∑
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PV Detection using CNN

Simulation
• Simulations analyzed the impact 

of training data parameters on 
the accuracy of CNN:

• Number of customers 
• Temporal resolution
• Level of mislabeled data

• Classifier was trained and tested 
10 times for each simulation.

• New training and test data       
generated at each fold.

• Accuracies and average 
computational times are 
recorded.
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PV Detection using CNN

Results: Number of Training Customers
• Simulation Parameters:
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PV Detection using CNN

Results: Temporal Resolution
• Simulation Parameters:
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PV Detection using CNN

Results: Mislabeled Training Customers
• Simulation Parameters

Classification Accuracy
vs Mislabeled Ratio
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PV Detection using CNN

Summary
• CNN classifier achieves +98% customer classification accuracy. The 

experiments conducted reveal the following insights about the data and 
simulation parameter requirements:

• 50 training customers provides the best performance. More training 
customer requires more computational time but does not perform 
significantly better.

• 1 minute resolution provides the best accuracy. The classifier’s 
performance is robust to lower resolution data however.

• The classifier maintains a reasonable accuracy even with 10% mislabeled 
training data (+85%).
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Outline

• DERs and emerging DER data
• Applications:

1. Detecting solar PV installations
• Change point detection
• Neural Network

2. Revenue from energy storage
• Clustering
• Optimization

3. Fast PV hosting capacity
• Event-driven regression over nonlinear voltage manifolds

23



Smart Grid Edge Analytics Workshop, June 4-5, 2019
DER Analytics, S. Grijalva

2. Energy Storage Revenue Analytics

Introduction
• Context: 

• Energy storage investors and industry stakeholders are interested in 
the mechanisms for storage services revenue. 

• Find the best measure of “favorable” price volatility to determine 
the expected revenue using temporal energy arbitrage. 

• Two time scales: 
• Day-ahead (DA) market
• Real-Time (RT) market

• Day-ahead energy market
• Market clearance of offers and bids of producers and consumers. 
• Power dispatch with the lowest total cost of operation considering 

network and security constraints.
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Day-Ahead Energy Arbitrage Revenue

Optimization Approach:
• Objective: maximizing the revenue
• Decision variables: 

charging/discharging power, binary 
variables

• Input data: storage parameters and 
market prices

• Constraints: storage power and 
energy limits

• Assumptions:
• Price-taker approach: negligible 

market power
• Perfect foresight: future prices for 

the day- ahead horizon are known 
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Day-Ahead Energy Arbitrage Revenue

Price Patterns
• Given a fixed size of the energy storage 

system, the arbitrage revenue is dependent 
on price data patterns and its statistics.

• PJM day-ahead energy market (2016)
• Seasonal price patterns 
• Summer: one peak in the early evening
• Winter: two daily peaks, morning and 

evening
• Other markets show almost similar pattern

• Revenue quantification based on price data 
pattern

• Classification criterion:
• Pearson correlation coefficient
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Clustering Algorithm
• K-means: classifies energy market 

prices into two groups
• Input: annual price data

• Outputs:
o Two clusters for summer and 

winter daily prices
o Two base prices for each cluster

• Used to find when each season 
starts (in terms of electricity 
prices) and how long it lasts.

Start Choose initial
πb,sum , πb,win

No

YesPCC(πb,sum , πday)
>

PCC(πb,win , πday)

Yes

No

day = 1

day <= 365

     +{day}     +{day}

Update πb,sum , πb,win

Yes

No

day + 1

Either
πb,sum , πb,win  
changed?

End

Day-Ahead Energy Arbitrage Revenue
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Clustering Results
• Algorithm converges in 2 to 4 iterations.
• Summer and winter prices are 

clustered: (a), (b)

• The best base prices are found: (c)

• The starting day and duration of each 
cluster is determined: (d)
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Regression Results
• Good linear fit
• Dispersion statistics: range, mean 

absolute deviation, standard 
deviation

Season Range MAD σ
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Real-Time Energy Arbitrage Revenue

Real-Time (RT) Energy Market
• Price updates on a rolling basis (e.g. 5 min) and not known in advance 
• Higher variability of RT prices with higher penetration of renewables
• Higher expected arbitrage opportunities in the RT market
• How do RT revenues compare with DA?

d-1 d

DA bids of day d 
submitted before the DA 
market closes at noon on 

day d-1

RT bid of period t 
submitted before the 
RT market closes at 
the end of period t-1

tt-1 T
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Real-Time Energy Arbitrage Revenue

Statistical analysis
• PJM DA and RT price data
• Higher price mean in the day-ahead 

market
• Higher price variability in the real-

time market → Higher expected 
arbitrage revenues

A. Maximum revenue with perfect 
foresight
• Similar mixed integer linear 

optimization model used for the 
day-ahead market

• Compare maximum RT arbitrage 
revenues with the day-ahead ones  

Year 2013 2014 2015 2016 2017
Mean DA 37.15 49.16 35.61 30.01 30.21
Mean RT 36.57 48.40 33.43 27.27 28.97

Median DA 34.62 38.10 30.58 27.48 27.46
Median RT 32.25 34.48 26.62 24.03 25.28

Std DA 15.46 51.87 22.63 11.58 12.02
Std RT 20.69 65.43 27.91 14.64 17.75
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Real-Time Energy Arbitrage Revenue

B. Price with forecasting errors
• Two models: back-casting and random normal errors.
• Proposed optimal dispatch algorithm: optimization 

based on shrinking horizon dynamic programming.

Optimization horizon

t = 1

t = 2

t = 3

t = T-1

t = T
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Real-Time Energy Arbitrage Revenue

Dispatch Algorithm
• Let        be the price forecast for 

time-period i, which can be 
evaluated by either of the two 
error models.

• Optimal dispatch decisions are
updated at the beginning of each
time period i.        

• State transition times are 
negligible.
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Real-Time Energy Arbitrage Revenue

Simulation Results: Back-Casting (BC)
• Revenue (BC) = actual price × dispatch optimized for the day before

• Figure: 100 × [Revenue (BC) / Revenue (perfect foresight)]

(a) Day-ahead prices                           (b) Real-time prices                    (c) 100× (real-time / day-ahead)
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Real-Time Energy Arbitrage Revenue

Simulation Results: Normal Errors (NE)
• Revenue (NE) = actual price × dispatch optimized for the simulated price

• Figure: 100 × [Revenue (NE) / Revenue (perfect foresight)]

(a) Day-ahead prices                           (b) Real-time prices                    (c) Real-time / day-ahead
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Energy Storage Revenue Analytics

Conclusions
• Higher value of the real-time energy arbitrage versus day-ahead:

• Statistical analysis of historical price data

• Optimization models maximizing the revenue

• Revenue maximization under uncertainty
• Optimal dispatch based on price forecast error

• Sensitivities of critical energy storage parameters

• RT arbitrage as an additional revenue stream for energy storage 
• Considerable and reliable if proper optimal dispatch strategies are applied.
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Outline

• DERs and emerging DER data
• Applications:

1. Detecting solar PV installations
• Change point detection
• Neural Network

2. Revenue from energy storage
• Clustering
• Optimization

3. Fast PV hosting capacity
• Event-driven regression over nonlinear voltage manifolds
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3. Fast PV Hosting Capacity

PV Impacts on Distribution Systems
 Solar PV is an intermittent, non dispatchable resource
 Power output is dependent upon solar irradiance 

 Negative impacts include:

• Voltage limit violations
• Thermal overloading

• Increased system losses
• Excessive controller actions

Power exported back to grid

• Power quality 
• Protection devices
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Fast PV Hosting Capacity

Traditional Interconnection Studies
1) Static screens: E.g. PV rated power limited to 

15% of peak load 
• Locational impacts ignored
• Feeder specific conditions not considered

2) Scenario-based simulation: Evaluates key 
scenarios using power flow (e.g. max/min load, 
max/min PV power)
• Voltage regulation capability ignored

• Regulators
• Capacitors
• Smart inverters

• Temporal impacts not captured

Pros: Simple, Fast, Utility Friendly 
Cons: Conservative estimates

Volt-VAR

Volt-WATT
39
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Fast PV Hosting Capacity

Time Series Simulations
 IEEE P1547.7 recommends:

Brute-force QSTS
• Chronological solution of steady-state power flows
• Discrete controls modeled (tap changers, switches)
• Recommended time step: 1 second to 1 hour
• One-year horizon

 Inputs: 
• Time series data (load and PV)
• Distribution feeder model
• Time-step, Time horizon

QUASI-STATIC

Steady state solution
(No numerical integration of 

differential equations)

Temporal dependence 
between time steps

TIME SERIES 

Temporal Impacts:
1) Regulator tap actions
2) Capacitor bank operations
3) Duration of voltage/thermal 

limit violation
4) Total line losses
5) Total VAR feed-in
6) Total WATT curtailed
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Fast PV Hosting Capacity

Brute-force QSTS Challenges
1) Challenges:

• Data Requirements: High resolution load (SCADA, AMI) and irradiance data
• Computational Time: 10-120 hours for a realistic feeder

2) Number of Power Flow (PF) solutions required
• A single PF flow takes fraction of a second, 31.5 million can take several days. 

3) Switched-mode, nonlinear system of equations
• Voltage regulation equipment → discrete system states

4) Chronological dependence between time steps
• Regulators, capacitor banks, switches → hysteresis, deadbands

5) Multiple valid PF solutions for a given input
• Machine learning approaches alone produce large errors
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Fast QSTS

Circuit 
reduction A-diakoptics

Vector 
quantization

Variable 
time-step

Fast PV Hosting Capacity

Existing Fast QSTS Methods
Time taken by QSTS:

Time taken 
by a single PF

Total PFs solved

Reduces the 
total number of 

buses

Divides larger 
circuits into 

subnetworks

Quantizes the 
time series data 

into clusters

Advances through 
time by taking large 

jumps 

Ensemble 
neural 

network

Trains a NN to model 
the impacts of PV on 

voltage regulation 
equipmentHow to detect buses 

of interest?
Speed increase 

limited by number of 
cores

Scalability issues 
to number of 

profiles

Error in voltage 
extremities

Feeder specific training
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Fast PV Hosting Capacity

Power Flow Voltage Manifold
 For 𝑛𝑛-bus network, we have:

 For QSTS, the time-series profiles                                  act as inputs,

 are ‘multipliers’ scaling real and reactive power injections of loads and 
PV systems                                                                                  

 Let                                                    , then we define a power flow manifold        as,

 Without loss of generality, we can extend this notion to any number of time 
series profiles 

where              is obtained by rewriting (1) in real and imaginary coordinates

Set of all loads assigned  
Set of all PVs assigned  
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Geometric Interpretation
 Modified IEEE 13-bus test circuit:

No Load
No PV

Rated 
Load

No PV

No Load
Rated PV

1.061 p.u.

1.078 p.u.

0.9394 
p.u.

Projections of the manifold

Rated Load = 4.88 MVA
Rated PV =  2 MW
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Model Formulation
 The voltage magnitude has a strong correlation with load and PV multipliers

 This correlation can be modeled by a linear approximant of the form:

 is referred to as voltage sensitivity coefficient

 Various analytical methods to compute      
• Newton Raphson (inverse of Jacobian)
• Gauss-Seidel method
• Adjoint-network technique

-profiles

Equation of hyperplane
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Sensitivity Coefficients
 Perturb-and-observe technique:

• Introduce small changes in injections
• Solve the AC power flow problem.
• Use regression to linearize manifold

Impact of Voltage Regulating Devices
 Maintain voltages +/- 5% of nominal
 Control logic consists of:

1) A ‘control’ signal (V at secondary winding)
2) A user-specified voltage set point
3) Deadband and delays to avoid ‘hunting’ 

 A change in tap position causes discrete jumps 
in the power flow manifold

 New sensitivity coefficients determined for 
each tap position

 Similar impact for capacitor banks. 
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Linear Sensitivity Model
 Let       denote the state of system controllers at time    then,

 The nodal voltage is estimated as

 The plane coefficients             are obtained using,

Ordinary Least Squares Estimator (OLS)

Design Matrix
(  -variations in power injections)

Response Vector
(points on the AC power flow manifold)

For each node

where,

is a hashing function

Regulator:
Cap bank:
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Choose a      that minimizes error in estimating 
states of system controllers

Fast PV Hosting Capacity

Design Matrix
 The design matrix      specifies query points on 

the manifold for the OLS estimator

Structure of       for two profiles

Residual Error Heat Map
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Fast QSTS Algorithm

A

A

where,

is a set of all nodes
is a set of control 
nodes
is the time horizon

QSTS Input:
Power Injections

(Load, PV profiles)

Linear Sensitivity 
Model

(Regression based)

QSTS Output:
Nodal Voltages,

Transformer Taps, 
Capacitor states

AC Power Flow 
Solver (OpenDSS)

Update model when system state changes

Feeder Model
(unbalanced 3-𝜙𝜙)
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Test case 1: IEEE 13-bus

 Controllers: 
• Three 1𝜙𝜙 voltage regulators (with LDC)

• One 3𝜙𝜙 controllable cap bank (600 kVAR) 

• One 1𝜙𝜙 cap bank fixed (100 kVAR) 

 PV system: 3𝜙𝜙 2MW (40% of peak load)

 Time-series Inputs (1 year, 1-sec): 
• 1 Load profile from actual SCADA data

• 1 PV profile based on irradiance data (Hawaii)

(2200 kVA)

4 controllable 
elements
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Fast PV Hosting Capacity

Test case 1: IEEE 13-bus, cont.

0.53% RMS Error 
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Test case 2: utility feeder j1
• 18.1 km, 12 kV feeder with 4,242 nodes
• 1,300 residential, C&I industrial loads (6.3 MW)
• 12 controllable elements (9-VRs, 3-Cap banks)
• Secondary modeled (wye/delta transformers)
• 7 PV systems installed (centralized, distributed)
• Time-series Inputs (1 year, 1-sec): 

• 3 load profiles (residential, commercial, 
lumped loads)

• 7 PV profiles (based on geographic location)

12 controllable 
elements

Commercial Residential
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Test case 2: utility feeder j1, cont. 

0.55% RMS Error 
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Smart Inverter: Volt-VAR (VV) Mode
 Inverter varies its reactive power (VAR) feed-

in based on the PCC voltage

 Closed loop control

 VV control follows a reference curve:
• A dead-band (R3)
• Variable VAR feed-in (R2, R4)
• Maximum VAR feed-in (R1, R5)

 Each region of the VV curve causes a ‘knot’ in 
the power flow manifold across the entire 
feeder

 The magnitude of impact is dictated by the 
size of the inverter and the circuit topology

Leading PF

Lagging PF

knots
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Fast PV Hosting Capacity

Test case 3: Smart Inverter Utility feeder CO1

 21.7 km, 12 kV distribution feeder with 5469 nodes
 9 controllable elements (4-VRs, 5-Cap banks)
 1,111 single phase loads, 317 three phase loads
 Secondary system modeled (wye and delta transformers)
 2.71% voltage imbalance  

 144 PV systems (62% penetration)
 ,           in VV mode
 Time-series Inputs (1 year, 1-sec): 

• 2 load profiles 
• 4 PV profiles

9 
controllable 

elements
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Test case 3: Smart Inverter Utility feeder CO1, cont.

0.8% RMS Error 

Inverter Specific
Impacts
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Conclusions
 A fast QSTS algorithm is developed
 Leverages the concept of a power flow manifold and dynamic regression.

 On average, 150 times faster than brute-force QSTS

 All voltage and current related PV impacts accurately estimated
 Performance demonstrated on a variety of test cases

 Potential applications:
• PV interconnection analysis tool
• Probabilistic hosting capacity 
• Sensitivity-based hosting capacity 
• Optimal smart inverter settings
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Summary

• Massive DERs and emerging DER data
• Applications:

1. Reliable detection of solar PV installations
• Change point detection
• Neural Network

2. Insight into mechanisms for energy storage revenue
3. Scalable fast PV hosting capacity
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